Symboles |
||||||||||||||||||||||||||||||||||||||||||||||||||||
Le symbole de l’octet est la lettre « o » minuscule et celui du byte est « B ». La lettre « o » n'est pas acceptable dans le système international d'unités (SI) à cause du risque de confusion avec le chiffre 0. Cette question n’est pas résolue, les unités d’information ne faisant pas partie du SI. L’octet est aussi plus rarement noté avec la lettre « b » minuscule (uniquement par le grand-public ou certains médias anglophones, ou d'autres langues qui incluent le mot byte dans leur vocabulaire, parfois avec une orthographe adaptée), ce qui est incorrect : ce symbole « b » est utilisé pour noter le bit.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||
Multiples |
||||||||||||||||||||||||||||||||||||||||||||||||||||
Traditionnellement, lorsqu'ils sont appliqués aux octets, les préfixes « kilo », « méga », « giga », etc., ne représentent pas un multiple de 1 000, mais un multiple de 210 = 1 024. Cependant cette tradition viole les normes en vigueur pour les autres unités, y compris le bit, et n'est même pas appliquée uniformément aux octets, notamment dans la mesure de la capacité des disques durs. Une nouvelle norme a donc été créée pour noter les multiples de 210 = 1 024 : les « kibi », « mébi », « gibi », etc. L'usage traditionnel reste largement en vigueur chez les professionnels comme le grand public, même si c'est en contradiction avec les recommandations SI qui définissent clairement d'autres préfixes. L'usage des préfixes binaires reste très confidentiel et ne se répand presque pas dans le langage courant, alors que les valeurs représentées par ces unités en puissance de 2 sont très utilisés dans les applications, notamment les systèmes d'exploitation. Cette distinction est d'ailleurs utilisée depuis longtemps par les fabricants de disques durs. Le fait que l'usage de préfixes en puissances de 10 permette d'afficher commercialement des capacités supérieures à celles données par les puissances de 2 peut introduire une erreur d'appréciation de la part d'utilisateurs non avertis. Ainsi, un disque dur de 100 gigaoctets (100×109 octets) contient le même nombre (arrondi) d'octets qu'un disque de 93,13 gibioctets (93,13×230 octets). La très grande majorité des disques durs étant divisés et adressables en secteurs de 512 octets, un comptage en unités de 1 024 octets serait plus naturel (en utilisant cette fois les préfixes binaires); les disques de stockage à mémoire non volatile (y compris les clés USB, lecteurs MP3 mobiles…) utilisent généralement l'unité avec le préfixe binaire. Mais il faut noter que cette capacité est celle du volume non formaté, le formatage des disques en système de fichiers en retire une partie, de plus une petite partie du volume de la mémoire non volatile est parfois utilisé par le logiciel interne de l'unité de stockage. D'autres usages courants, mais incorrects, suppriment complètement le nom ou le symbole de l'unité pour ne plus garder que le nom ou le symbole du préfixe multiplicateur « k ». Cela entraîne cependant de nombreuses ambigüités quant à la nature de cette unité, notamment quand on l'utilise pour exprimer un taux de transfert de données ou la capacité d'une puce de mémoire. En effet, dans ces deux cas, il est courant que l'on mesure en bits plutôt qu'en octets.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||
Normalisés |
||||||||||||||||||||||||||||||||||||||||||||||||||||
La normalisation des préfixes binaires de 1998 par la Commission électrotechnique internationale spécifie les préfixes suivants pour représenter les puissances de 2 :
et ainsi de suite. Concernant les multiples de l'octet, cela donne :
Les préfixes kilo, méga, giga, téra, etc., correspondent aux mêmes multiplicateurs que dans tous les autres domaines : des puissances de 10. Appliqué à l'informatique, cela donne :
|
||||||||||||||||||||||||||||||||||||||||||||||||||||
Traditionnels |
||||||||||||||||||||||||||||||||||||||||||||||||||||
De manière erronée selon le SI, et avant la normalisation de 1998, on utilisait les unités dérivées que sont le kilooctet, le mégaoctet, le gigaoctet pour représenter les valeurs suivantes en puissance de 2 :
|
||||||||||||||||||||||||||||||||||||||||||||||||||||
Variantes orthographiques |
||||||||||||||||||||||||||||||||||||||||||||||||||||
La langue française pose aussi un problème de syntaxe, relative à la prononciation de la voyelle initiale du mot octet avec un préfixe ; aussi, voit-on dans la littérature les formes suivantes : « kilo-octet » (avec trait d'union), « kilooctet » (sans trait d'union) ou « kiloctet » (fusion des voyelles). Dans les unités SI, le nom du préfixe s'écrit toujours sans trait d'union avant le nom de l'unité de base. | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Propriétés |
||||||||||||||||||||||||||||||||||||||||||||||||||||
Propriétés de représentation binaire |
||||||||||||||||||||||||||||||||||||||||||||||||||||
Un octet peut prendre 28=256 valeurs différentes. La valeur de tout octet peut s'écrire avec un entier naturel entre 0 et 255 compris (en base 10). Elle peut aussi s'écrire avec huit chiffres binaires, entre 000000002 et 111111112 compris, ou avec deux chiffres hexadécimaux, entre 0016 et FF16 compris. La notation hexadécimale est utilisable dans de nombreux langages informatiques car elle est pratique et compacte pour noter la valeur d'un octet. Un octet peut servir à noter un entier naturel, appelé en informatique « non signé », entre 0 et 255 (en base 10). Une autre convention courante, le complément à deux, permet de noter un nombre entier, ou « signé », entre -128 et +127 compris (en base 10). Voir aussi l'article Système binaire. De nombreuses conventions existent pour représenter un caractère par un ou plusieurs octets. On peut notamment citer le codage ISO 8859-1 très utilisé pour représenter avec un octet les 26 lettres minuscules, les 26 majuscules, les 10 chiffres, les lettres accentuées et la ponctuation, des langues d'Europe occidentale, dont le français. Plus récent, le codage UTF-8 permet de noter tout caractère avec un à quatre octets, selon le caractère. L'article sur le codage de caractères développe ce thème.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||
Propriétés de représentation décimale |
||||||||||||||||||||||||||||||||||||||||||||||||||||
Dans certaines applications nécessitant un codage exact des valeurs décimales (applications financières), les puissances de 2 peuvent ne pas s'avérer pratiques. Aussi un octet est aussi parfois utilisé pour stocker jusqu'à 2 chiffres décimaux exactement (entre 0010 et 9910), chacun codé sur un quartet (4 bits) distinct entre 00002=010 et 10012=910. Les autres valeurs de quartets peuvent être utilisées pour coder la position d'une virgule décimale, un signe, l'absence de chiffre significatif à la position indiquée, ou une autre fonction spéciale (valeur infinie, valeur erronée non numérique, etc.). Certains calculateurs (et des bibliothèques logicielles de calcul à virgule fixe ou travaillant sur de très grands entiers ou des valeurs de grande précision) utilisent ce format dit « BCD », sigle anglais de binary coded decimal (décimal codé en binaire). L'usage du codage BCD était populaire sur les anciens systèmes (notamment ceux utilisant l'EBCDIC) car cela évitait une conversion finale coûteuse pour afficher les nombres à virgule flottante. De plus ce système était plus pratique au temps où les données étaient entrées manuellement sur des cartes perforées : pour convertir un nombre BCD en caractères, il suffisait d'éclater le nombre BCD en deux en n'utilisant qu'un seul quartet par octet pour représenter le chiffre en décimal, le quartet de poids fort prenant une valeur fixe indiquant simplement que c'est un chiffre décimal. Les autres valeurs de quartets de poids fort étaient utilisées pour indiquer que c'était une lettre majuscule, une lettre minuscule ou un autre symbole ou ponctuation. Aujourd'hui, dans la plupart des systèmes actuels, le codage EBCDIC des caractères et du BCD pour les valeurs numériques est plus rarement utilisé car la plupart des calculs se font plus rapidement en représentation binaire de façon matérielle avec une précision globale prédéfinie (codée sur un nombre fixe d'octets). Il existe des variantes du système BCD permettant de conserver une représentation précise des nombres à virgule fixe ou flottante en base 10, tout en permettant une plus grande compacité de stockage et en rendant les calculs plus rapides. L'astuce consiste à grouper les chiffres décimaux et les représenter en binaire sur un groupe de plusieurs octets. Par exemple :
|
||||||||||||||||||||||||||||||||||||||||||||||||||||
Usages |
||||||||||||||||||||||||||||||||||||||||||||||||||||
Les processeurs n'opèrent généralement pas sur chaque bit individuellement, mais sur des groupes de bits. L'habitude de concevoir le matériel pour qu'il traite les bits par huit, ou par multiples de huit, s'est généralisée depuis les années 1970, si bien qu'aujourd'hui l'octet et ses multiples sont généralement utilisés comme mesure de la capacité de mémorisation des mémoires informatiques : mémoire vive, disquette, disque dur, CD-ROM, etc. La taille des fichiers est aussi mesurée en octets (avec le plus souvent les multiples conventionnels, sauf pour les disques durs ; voir ci-dessous). Le taux de transfert des bus informatiques entre les applications informatiques et périphériques informatiques locaux est généralement donné en octets par seconde (avec les multiples normalisés ; voir ci-dessous). Mais les débits sur les réseaux ou supports de transmission de données s'expriment plutôt :
|
||||||||||||||||||||||||||||||||||||||||||||||||||||
Bits et octets |
||||||||||||||||||||||||||||||||||||||||||||||||||||
Attention, les taux de transfert des réseaux
informatiques sont souvent donnés en bits par
seconde (b/s, Mb/s, Gb/s). Exemple de conversion des bits vers octets :
|
||||||||||||||||||||||||||||||||||||||||||||||||||||
Mots |
||||||||||||||||||||||||||||||||||||||||||||||||||||
Lorsque le traitement se fait sur plusieurs octets simultanément, notamment 2 octets (16 bits) et 4 octets (32 bits), on parle parfois de mot et de double-mot. La signification de ces termes a tendance à varier avec le contexte, aussi n'est-il pas recommandé de les utiliser. | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Octets, bits et décibels |
||||||||||||||||||||||||||||||||||||||||||||||||||||
Le bit (ou son multiple l'octet) est une unité dérivée parfois plus pratique dans certains calculs sur les signaux que le bel noté « B » ou le décibel noté « dB » : une qualité de signal de 1 bit est définie comme le double du logarithme binaire d'un rapport signal/bruit exactement égal à 2 et le bel est défini comme le logarithme décimal d'un rapport de grandeurs exactement égal à 10. Par la suite, on parle de signaux de qualité 1 octet :
On peut noter qu'en dessous de 6 dB de rapport signal/bruit, il n'est théoriquement plus possible de détecter un seul bit entier d'information avec un seul échantillon. Cependant, la détection d'informations (pour la transmission ou le stockage) dans un tel signal n'est pas impossible grâce à la technique du suréchantillonnage. Il suffit de prendre plusieurs échantillons : les rapports signal/bruit de chaque échantillon s'additionnent alors jusqu'à dépasser le seuil de 6 dB, au delà duquel il est possible, par calcul, de détecter, transmettre ou stocker 1 bit d'information. On fait alors de même avec des signaux en dessous de 48 dB pour détecter, transmettre ou stocker, par calcul, 1 octet d'information. Les plus petits « fragments » de bits ou d’octets sont donc parfaitement utilisables !
|
||||||||||||||||||||||||||||||||||||||||||||||||||||
Sur les supports de transmission de données |
||||||||||||||||||||||||||||||||||||||||||||||||||||
Débit de transmission |
||||||||||||||||||||||||||||||||||||||||||||||||||||
Le débit maximum d'un support de transmission de données (exprimé en décibels par seconde, ou resp. bits par seconde, ou octets par seconde) est la somme des produits de la fréquence d'échantillonnage de chaque signal transporté (exprimée en hertz) par la qualité de ce signal (exprimée en décibels, ou resp. bits ou en octets). Selon les technologies employées, il existe toujours un compromis entre qualité et fréquence d'échantilonnage de chaque signal, le meilleur compromis (qui apporte le débit maximum) étant obtenu quand le produit qualité-fréquence est maximum. Le débit (ou capacité temporelle d'informations) effectif d'un support de transmission de données (exprimé en décibels par seconde, ou resp. en bits par seconde ou en octets par seconde) est toujours strictement inférieure à ce débit maximum théorique qu'il est impossible de dépasser sur le même support (à condition d'avoir pris en compte tous les signaux détectables sur ce support). L’unité la plus employée pour mesurer le débit d’un support de transmission de données est le bit par seconde (et ses multiples normalisés en puissances de 10 comme le kilobit par seconde symbolisé kbit/s, voire kbps en anglais) pour les supports physiques, mais l’usage de l’octet par seconde (et de ses multiples normalisés en puissances de 10, ou traditionnels en puissances de 2) est très courant pour les applications et protocoles de transfert de fichiers.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||
Quantité d'informations transmise |
||||||||||||||||||||||||||||||||||||||||||||||||||||
La quantité d'informations maximale transmise dans un intervalle de temps sur un support de transmission de données est l'intégration de son débit sur chaque position temporelle dans cet intervalle où les échantillons sont transmis et détectés.La quantité d'informations effectivement transmise est toujours strictement inférieure à cette quantité maximale théorique. Elle se mesure en décibels, ou resp. bits ou octets (ou ses multiples normalisés en puissances de 10, ou conventionnels en puissances de 2). L'unité la plus utilisée est le kilooctet traditionnel, symbolisé ko en français.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||
Sur les supports de stockage d'informations |
||||||||||||||||||||||||||||||||||||||||||||||||||||
Capacité par unité spatiale |
||||||||||||||||||||||||||||||||||||||||||||||||||||
On effectue le même raisonnement pour la capacité des supports statiques de stockage, en considérant que chaque position de la longueur (ou resp. de la surface ou du volume) de ce support définit un certain nombre de signaux ayant chacun une qualité exprimée en bits, octets ou décibels, la nature de ces signaux détectables dépendant des capteurs employés (conversion de signaux électriques en signaux magnétiques, optique, …), de leur qualité (c'est-à-dire leur précision intrinsèque), et du niveau de bruit environnant (dépendant aussi de la construction du support, notamment son isolation). Le domaine spatial de stockage le plus utilisé aujourd'hui est la surface (disquettes, disques durs, optiques, magnéto-optiques, mémoires électroniques, …), mais la longueur est encore utilisée (bandes magnétiques). Le domaine spatial du volume est encore à l'état expérimental (stockage optique dans un cristal, holographique, …), mais commence à apparaître sur les disques optiques multicouche (les unités correspondantes restent encore surfaciques). On peut alors parler de capacité linéaire (ou resp. surfacique ou volumique) d'informations exprimée en décibels par mm (ou resp. par mm² ou par mm³) ou donc aussi en bits par mm (ou resp. par mm² ou par mm³) ou encore en octets par mm (ou resp. par mm² ou par mm³), l'unité de longueur (ou resp. de surface ou de volume) remplaçant la seconde dans le paragraphe précédent, et selon les mêmes formules de Nyquist-Shannon pour la qualité des signaux échantillonnés sur ce support. Pour les disques durs, disques optiques ou magnéto-optiques, l'unité de capacité surfacique la plus utilisée est le bit par mm², ou ses multiples normalisés en puissances de 10 comme le kilobit par mm², symbolisé kb/mm². On trouve cependant aussi mention du multiple normalisé kilooctet par mm² (ko/mm² en français). Les unités traditionnelles ne sont jamais employées à ce niveau, au contraire des fabricants de mémoires qui préfèrent les unités traditionnelles en puissances de 2 comme le kilooctet par mm² (qui parfois comptent plutôt en nombre de transistors par unité de surface, mais cette fois avec les multiples conventionnels en puissances de 10, sachant qu'un bit d'information stockée nécessite souvent deux transistors !). |
||||||||||||||||||||||||||||||||||||||||||||||||||||
Capacité totale du support |
||||||||||||||||||||||||||||||||||||||||||||||||||||
La capacité totale d'informations maximale de ce support, exprimée en décibels, bits ou octets est l'intégration de cette capacité linéaire (ou resp. surfacique ou volumique) sur chaque position de la longueur (ou resp. de la surface ou du volume) de ce support. La capacité totale d'informations effective d'un support de stockage se mesure le plus souvent en octets (ou ses multiples normalisés en puissances de 10, comme le kilooctet, symbolisé conventionnellement ko sur les disques durs). Mais le plus souvent l'interface de ce support se fait par secteurs de taille conventionnelle de 512 octets, et donc la capacité d'utilisation de ce support dans les systèmes d'exploitation se mesure plus souvent et de façon plus pratique avec les multiples tradionnels. |